學(xué)寶教育旗下公務(wù)員考試網(wǎng)站
當(dāng)前位置:主頁  >> 行測資料  >> 其它   
其它
2014年河北公務(wù)員行測:數(shù)學(xué)運(yùn)算之余數(shù)問題
http://fuhis.cn       2013-12-02      來源:河北公務(wù)員考試網(wǎng)
【字體: 】              

  在公務(wù)員行測數(shù)量考試中,余數(shù)同余問題是數(shù)學(xué)運(yùn)算考察的傳統(tǒng)題型,也是難點(diǎn)題型。雖然近年來考察有所減少,但對于基礎(chǔ)知識與基本題型的掌握仍然不可輕視。行測考試數(shù)學(xué)運(yùn)算中余數(shù)問題側(cè)重考查考生的逐步分析能力。在解答余數(shù)問題時需要考生充分利用相關(guān)知識點(diǎn)排除不可能的情形,需要考生具備比較高的分析能力。下文用考試真題為例,說明余數(shù)問題的解題思路。


  按照??嫉念}型,余數(shù)問題可以分為以下幾類: 代入排除類型、余數(shù)關(guān)系式和恒等式的應(yīng)用、同余問題、同余問題的延伸。


  一、代入排除類型


  例1:學(xué)生在操場上列隊做操,只知人數(shù)在90-110之間。如果排成3排則不多不少;排成5排則少2人;排成7排則少4人;則學(xué)生人數(shù)是多少?( )


  A.102 B.98 C.104 D.108


  【解析】對于余數(shù)問題我們可以優(yōu)先考慮代入排除法。直接代入選項(xiàng),看看哪個符合題目所給的條件,選項(xiàng)108滿足條件,因此選擇D選項(xiàng)。


  例2:在一個除法算式里,被除數(shù)、除數(shù)、商和余數(shù)之和是319,已知商是21,余數(shù)是6,問被除數(shù)是多少?( )


  A.237 B.258 C.279 D.290


  【解析】對于余數(shù)問題我們可以優(yōu)先考慮代入排除法。根據(jù)題目可得被除數(shù)+除數(shù)=319-21-6=292。直接代入選項(xiàng),如代入A項(xiàng),可得除數(shù)為292-237=55,利用被除數(shù)=除數(shù)乘以商再加余數(shù),這個等式利用尾數(shù)法,來快速排除答案。最后可得選擇C選項(xiàng)。


  二、余數(shù)關(guān)系式和恒等式的應(yīng)用


  余數(shù)的關(guān)系式和恒等式比較簡單,因?yàn)檫@一部分的知識點(diǎn)在小學(xué)時候就已經(jīng)學(xué)過了,余數(shù)基本關(guān)系式:被除數(shù)÷除數(shù)=商…余數(shù)(0≤余數(shù)<除數(shù)),但是在這里需要強(qiáng)調(diào)兩點(diǎn):


  1、余數(shù)是有范圍的(0≤余數(shù)<除數(shù)),這需要引起大家足夠的重視,因?yàn)檫@是某些題目的突破口。


  2、由關(guān)系式轉(zhuǎn)變的余數(shù)基本恒等式也需要掌握:被除數(shù)=除數(shù)×商+余數(shù)。


  例3:兩個整數(shù)相除,商是5,余數(shù)是11,被除數(shù)、除數(shù)、商及余數(shù)的和是99,求被除數(shù)是多少?( ?。?/p>


  A.12    B.41    C.67    D.71


  【解析】余數(shù)是11,因此,根據(jù)余數(shù)的范圍(0≤余數(shù)<除數(shù)),我們能夠確定除數(shù)>11。除數(shù)為整數(shù),所以除數(shù)≥12,根據(jù)余數(shù)的基本恒等式:被除數(shù)=除數(shù)×商+余數(shù)≥12×商+余數(shù)=12×5+11=71,因此被除數(shù)最小為71,答案選擇D選項(xiàng)。


  例4:有四個自然數(shù)A、B、C、D,它們的和不超過400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。那么,這四個自然數(shù)的和是?()


  A.216    B.108    C.314    D.348


  【解析】利用余數(shù)基本恒等式:被除數(shù)=除數(shù)×商+余數(shù),有A=B×5+5= (B+1)×5。由于A、B均是自然數(shù),于是A可以被5整除,同理,A還可以被6、7整除,因此,A可以表示為5、6、7的公倍數(shù),即210n。由于A、B、C、D的和不超過400,所以A只能等于210,從而可以求出B=41、C=34、D=29,得到A+B+C+D=314,選C。


  【小結(jié)】像上面這兩個題目,就是活用這兩個知識點(diǎn)來解題的,所以在對這類問題的練習(xí)過程中,一定要牢牢地把握這兩點(diǎn),我們就可以快速的解題。


  三、同余問題


  這類問題也是考試中比較常見的一類,主要是從除數(shù)與余數(shù)的關(guān)系入手,來求得最終答案。通過總結(jié)我們得出解決同余問題的核心口訣,如下表所示:


  同余問題核心口訣 “余同取余,和同加和,差同減差,最小公倍數(shù)作周期” 。


  余同取余:“一個數(shù)除以4余1,除以5余1,除以6余1”,這個數(shù)是 60n+1;


  和同加和:“一個數(shù)除以4余3,除以5余2,除以6余1”,這個數(shù)是 60n+7;


  差同減差:“一個數(shù)除以4余3,除以5余4,除以6余5”,這個數(shù)是 60n-1。


  說明:在這里,n的取值范圍為整數(shù),可以為正數(shù)也可以取負(fù)數(shù)。


  例1:一個數(shù)除以4余1,除以5余1,除以6余1,請問這個數(shù)如何表示?


  【解析】如果我們設(shè)這個數(shù)為A,則A除以4余1,除以5余1,除以6余1,那么A-1就可以被4、5、6整除,則4、5、6的最小公倍數(shù)為60,因此A-1我們就可以表示為60n,所以,A=60n+1。


  【提示】這個數(shù)除以4余1,除以5余1,除以6余1,即余數(shù)都為1,余數(shù)相同,直接利用口決“余同取余,最小公倍數(shù)作周期”最后找到了這個數(shù)為A=60n+1。


  例2:一個數(shù)除以4余3,除以5余2,除以6余1,請問這個數(shù)如何表示?


  【解析】如果我們設(shè)這個數(shù)為A,則A除以4余3,除以5余2,除以6余1,我們知道除數(shù)與對應(yīng)余數(shù)的和相同,對應(yīng)的為“和同加和”,滿足這三個條件的數(shù)可以表示為:A= 60n+7。


  【提示】這個數(shù)除以4余3,除以5余2,除以6余1,即商與余數(shù)的和都為7,即和相同,直接利用口決“和同加和,最小公倍數(shù)作周期”最后找到了這個數(shù)為A=60n+7。


  例3:一個數(shù)除以4余1,除以5余2,除以6余3,請問這個數(shù)如何表示?


  【解析】除以除以4余1,除以5余2,除以6余3,我們知道除數(shù)與對應(yīng)余數(shù)的差相同,對應(yīng)的為“差同減差”,滿足這三個條件的數(shù)可以表示為:60n-1。


  【總結(jié)】只要出現(xiàn)了同余問題,我們可以直接利用口訣:“余同取余,和同加和,差同減差,最小公倍數(shù)作周期”就能快速的找到題目所要求的數(shù)字。


  根據(jù)以上三道例題的結(jié)論,我們還可以舉一反三地解決其他相關(guān)問題。如:


  例4:一個三位數(shù)除以9余7,除以5余2,除以4余3,這樣的三位數(shù)共有多少個?


  A. 5個     B. 6個    C. 7個     D. 8個


  【解析】根據(jù)題目除以5余2,除以4余3,我們知道除數(shù)與對應(yīng)余數(shù)與商的和相同,對應(yīng)的為“和同加和”,滿足這兩個條件的數(shù)可以表示為,B=20n+7,表示除以20余7;再加上之前的條件除以9余7,對應(yīng)的為“余同取余”,我們得到這個數(shù)可以表示為180n+7,由于這個數(shù)為三位數(shù),所以n可以取1、2、3、4、5,所以共5個。


  四、同余問題的延伸


  公務(wù)員行測考試中常見的集中情況和中國剩余定理,就是同余問題的延伸,那么接下來我們就重點(diǎn)研究中國剩余定理。了解中國剩余定理在解決實(shí)際問題中的應(yīng)用。中國古代著名數(shù)學(xué)著作<孫子算經(jīng)>記載,“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”此問題為中國剩余定理的原型。下面河北公務(wù)員考試網(wǎng)(fuhis.cn/介紹該如何來應(yīng)對此類的問題。


  例6:物品的個數(shù)滿足除以3余2,除以5余3,除以7余2,則物品至少有多少個?( )


  A.21 B.23 C.37 D.43


  【解析】余數(shù)問題,可考慮代入排除法,選擇B選項(xiàng)。


  例7:以上題為例:物品的個數(shù)滿足除以3余2,除以5余3,除以7余2,則物品有多少個?( )


  【解析】此時用同余問題的口訣不能再解決此類的問題了,那么我們還可以考慮,滿足除以3余2的最小數(shù)為2,在2的基礎(chǔ)上每次加3,直到滿足除以5余3,這個最小的數(shù)為8;在8的基礎(chǔ)上每次加3、5的最小公倍數(shù)15,直到滿足除以7余2,這個數(shù)最小為23,。所以滿足條件的最小自然數(shù)為23,而3、5、7的最小公倍數(shù)為105,所以滿足條件的數(shù)可以表示為105N+23(n=0、1、2、3……)類似于同余問題,最小公倍數(shù)做周期。我們解決此類問題考慮的方法是層層推進(jìn)的解法。


  例8:韓信故鄉(xiāng)淮安民間留傳著一則故事-----“韓信點(diǎn)兵”。秦朝末年,楚漢相爭。有一次,韓信率1500名將士與楚軍交戰(zhàn),戰(zhàn)后檢點(diǎn)人數(shù)。他命將士3人一排,結(jié)果多出2名;命將士5人一排,結(jié)果多出3名;命將士7人一排,結(jié)果又多出2名,用兵如神的韓信立刻知道尚有將士人數(shù)。已知尚有將士人數(shù)是下列四個數(shù)字中的一個。則該數(shù)字是( )


  A.868 B.998 C.1073 D.1298


  【解析】余數(shù)問題:代入排除法,選C.


  有些題目可以直接利用其口訣做題,而有些題目不可以直接利用其口訣做題,用層層推進(jìn)的解法又較慢,那我們該怎么辦呢?巧妙應(yīng)用---余同、和同、差同的構(gòu)造思想


  例9:某出版社工作人員將一批書打包,每包裝11本則多出5本,每包裝13本則多出6本,每包裝15本,則多出7本,問這批書至少有多少本?


  A.1072 B.2144 C.2145 D.3217


  【解析】這一批書的本數(shù)設(shè)為A,此時A滿足除以11余5,除以13余6,除以15余7,經(jīng)觀察發(fā)現(xiàn)余不同、差不同、和不同,但是我們可以將數(shù)的數(shù)量乘以2,這時2A滿足除以11余10,除以13余12,除以15余14,由此我們已經(jīng)構(gòu)造出了三者之差均為1,根據(jù)“差同減差,最小公倍數(shù)做周期”,2A=2145n-1(2145為11、13、15三者的最小公倍數(shù),n為1、2、3……)2A最小為2144,因此這批書只少有2144÷2=1072本書。選擇A選項(xiàng)。


  【提示】遇見此類問題時,我們將其構(gòu)造成同余問題,再直接利用口決“和同加和,最小公倍數(shù)作周期”最后找到所求的那個數(shù)的2倍,再除以2才是正確的答案。

 

  行測更多解題思路和解題技巧,可參看2014年公務(wù)員考試技巧手冊。



免費(fèi)學(xué)習(xí)資源(關(guān)注可獲取最新開課信息)
?
互動消息